The putative influence of the agr operon upon survival mechanisms used by Clostridium acetobutylicum.
نویسندگان
چکیده
The bacterium Clostridium acetobutylicum produces acids as an energy-yielding process during exponential growth. An acidic environment, however, is toxic to the cells and two survival mechanisms are in place to prevent them from dying. Firstly, during a solventogenesis phase, the cells take up these acids and convert them to solvents, thus raising the environmental pH. Secondly, the cells undergo sporulation to form highly resistant spores capable of surviving extreme conditions. One possible regulatory mechanism for these processes is the accessory gene regulatory (agr) quorum-sensing system, which is thought to coordinate cell population density with cell phenotype. We model this system to monitor its putative effect upon solventogenesis and the sporulation-initiation network responsible for triggering spore formation. We demonstrate that a high population density should be able to induce both solventogenesis and sporulation, with variations to the parameter set allowing sporulation alone to be triggered; additional distinct signals are capable of restoring the solventogenic response. We compare the agr system of C. acetobutylicum with that of Staphylococcus aureus in order to investigate why the differences in feedback between the two systems may have evolved. Our findings indicate that, depending upon the mechanism of interaction between the agr system and the sporulation-initiation network, the clostridial agr circuitry may be in place either to moderate the number of spores that are formed (in order for this number to reflect the urgency of the situation), or simply as an energy-saving strategy.
منابع مشابه
Jabbari, Sara and Steiner, Elisabeth and Heap, John T. and Winzer, Klaus and Minton, Nigel P. and King, John R. (2013) The putative influence of the agr operon upon survival mechanisms used by Clostridium
The bacterium Clostridium acetobutylicum produces acids as an energy-yielding process during exponential growth. An acidic environment, however, is toxic to the cells and two survival mechanisms are in place to prevent them from dying. Firstly, during a solventogenesis phase, the cells take up these acids and convert them to solvents, thus raising the environmental pH. Secondly, the cells under...
متن کاملCap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism
An operon comprising two genes, CA_P0037 and CA_P0036, that encode proteins of unknown function that were previously shown to be highly expressed in acidogenic cells and repressed in solventogenic and alcohologenic cells is located on the pSOL1 megaplasmid of Clostridium acetobutylicum upstream of adhE2 A CA_P0037::int (189/190s) mutant in which an intron was inserted at position 189/190 in the...
متن کاملMolecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator.
Clostridium acetobutylicum DSM 792 accumulates and phosphorylates mannitol via a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). PEP-dependent mannitol phosphorylation by extracts of cells grown on mannitol required both soluble and membrane fractions. Neither the soluble nor the membrane fraction could be complemented by the opposite fraction prepared from glucose-grown ce...
متن کاملCorrection for Chen et al., Epsilon-Toxin Production by Clostridium perfringens Type D Strain CN3718 Is Dependent upon the agr Operon but Not the VirS/VirR Two-Component Regulatory System
Published 27 January 2015 Citation Chen J, Rood JI, McClane BA. 2015. Correction for Chen et al., Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. mBio 6(1):e02491-14. doi:10.1128/mBio.02491-14. Copyright © 2015 Chen et al. This is an open-access article distributed under the terms of...
متن کاملEpsilon-Toxin Production by Clostridium perfringens Type D Strain CN3718 Is Dependent upon the agr Operon but Not the VirS/VirR Two-Component Regulatory System
Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 243 2 شماره
صفحات -
تاریخ انتشار 2013